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In this paper we show that the Boltzmann weights of the three-dimensional 
Baxter-Bazhanov model give representations of the braid group if some suitable 
spectral limits are taken. In the trigonometric case we classify all possible 
spectral limits which produce braid group representations. Furthermore, we 
prove that for some of them we get cyclotomic invariants of links and for others 
we obtain tangle invariants generalizing the cyclotomic ones. 
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1. I N T R O D U C T I O N  

Baxte r  and  B a z h a n o v  t~) i n t r o d u c e d  a par t icu la r ly  in teres t ing  th ree -d imen-  

s ional  in tegrab le  m o d e l  wi th  N local  states. I t  is one  of  the few solvable  
t h r ee -d imens iona l  mode l s  and  seems to be highly nont r iv ia l .  

T h e  B a x t e r - B a z h o n o v  m o d e l  is a genera l i za t ion  of  the Z a m o l o d c h i k o v  
model ,  ~2'3) which  is the pa r t i cu la r  case N =  2. K a s h a e v  et  al. t4'51 p r o v e d  

tha t  the B o l t z m a n n  weights  of  the B a x t e r - B a z h a n o v  m o d e l  satisfy the 
t e t r a h e d r o n  equa t ions ,  tz'6,7) This  is a genera l i za t ion  of  the result  ob ta ined  

by Baxte r  ~8) for the Z a m o l o d c h i k o v  model .  They  use the s y m m e t r y  p rope r -  

ties c4) of  the B o l t z m a n n  weights ,  which  have  been  found  independen t ly  also 
by B a z h a n o v  and  Bax t e r J  9) 
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1084 Cerchiai et  al.  

One of the most important features ~ of the Baxter-Bazhanov model 
is that apart from a modification of the boundary conditions, it can be 
obtained as a three-dimensional interpretation of the generalized s l (n)-  

chiral Potts model, t~~ lZ~ 
Given a two-dimensional integrable model, which has Boltzmann 

weights satisfying the Yang-Baxter equation, it is an interesting question to 
ask which braid group representations and hence which link invariants 
arise therefrom. Akutsu, Deguchi, and Wadati t~3''41 invented a general 
procedure to study this problem and obtained link invariants from most 
two-dimensional integrable models. Date et aL ~'5~ studied the braid group 
representations and the corresponding (cyclotomic) link invariants arising 
from the sl(n)-chiral Potts model in the trigonometric limit. Following a 
suggestion made by Jones, ~16J they generalized the results of Kobayashi 
et al. ~71 for the sl(2)-chiral Potts model. The connection of such invariants 
with the Seifert matrix has been studied by Goldschmidt and Jones. t18~ 

Following a similar scheme, we study the three-dimensional integrable 
Baxter-Bazhanov model from the point of view of the link theory. We 
generalize the results of ref. 15 to the R-matrix with spectral parameters 
associated to the Baxter-Bazhanov model. We show that, choosing suitable 
limits of the spectral parameters, this matrix gives cyclic representations of 
the braid group. In the trigonometric case we classify all possible spectral 
limits which produce braid group representations. We prove that for some 
of them we get cyclotomic link invariants, while for other limits of the 
rapidity variables (spectral parameters) the R-matrix of the Baxter- 
Bazhanov model gives tangle invariants. Such invariants are generaliza- 
tions of the cyclotomic invariants previously mentioned. 4 

2. THE T H R E E - D I M E N S I O N A L  B A X T E R - B A Z H A N O V  M O D E L  
A N D  ITS T W O - D I M E N S I O N A L  R E D U C T I O N  

The Baxter-Bazhanov model ~t~ is an integrable three-dimensional IRF 
(interaction-round-a-face) model. This means that it is defined on a simple 
cubic lattice 5 ~ and that a spin variable tr is placed at each site of 50. From 
the point of view of statistical mechanics the Baxter-Bazhanov model 
depends on two integer parameters N (N>~ 2) and 17. Here N is the number 
of values that each spin a can take, while n is one of the lattice dimensions 
(number of elementary cubes in a fixed direction, e.g., in front-to-back 
direction). 

4 This work is mainly based on the thesis of B. L. Cerchiai (Modelli di Baxter-Bazhanov e 
di Potts chirale e teoria dei nodi, academic year 1992-93), in fulfilment of the requirements 
for the degree (laurea) in physics. 
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Fig. 1. Elementary cell. 

The elementary cube of s is shown in Fig. 1. 
In order to define the Bol tzmann weight of the elementary cell shown 

in Fig. 1 it is necessary to introduce some notat ion first. 
Let x be a complex parameter  and k, l, m three integers, 0 ~< k, l, m -N< 

N -  1. Let o) be a primitive N th  root  of unity 

and 

(.0 = e 2ni/N (2.1) 

091/2 = e rti/N (2.2) 

Let �9 and s be the functions defined by 

qS(l) = (corn) I~u + l) (2.3) 

s(k, l ) = e )  k/ (2.4) 

Notice that 

s(k  + N, l)  = s(k, l + N)  = s(k, 1) 

s(k + l, m ) = s ( k ,  m) s(l, m)  

q~(k + l)  = qS(k) qS(l) s(k, l)  

(2.5) 

(2.6) 

(2.7) 

Moreover,  let w(x, l)  be the function defined by 

where 

/ 
w(x, l) _ i_zl(x).]z l'-[ (1 --COkX) - '  
w(x, 0) , = 

(2.8) 

A ( x )  = (1 - -  x N )  I /N  (2.9) 
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With this definition the function w(x, l) is fixed up to the overall nor-  
malization factor w(x, 0), while LJ is fixed up to the choice of a phase when 
taking the root. In part icular  it is possible to impose the following condi- 
tion on w(x, 0): 

w(x, O) = W(ogkx, 0) (2.10) 

Applying this condition (2.10) to the definition of w in (2.8), it follows 
immediately that  

w(x, O) w(x, l + k) = w(x, k) W(cokx, l) (2.11) 

Having introduced all this notation,  following ref. 1, the Bol tzmann weight 
of the elementary cube shown in Fig. 1 is constructed as 

N - - I  

W(ale ,  f, g l b ,  c, d l h ) =  ~ v~(ale, f ,  g l b ,  c , d [h )  (2.12) 
a ~ O  

with 

v~(a l e, f , g  ] b, c,d] 17) 

w(p'/p, e - c - d  + h) 

w(p'/p, a - g - f  + b) 
s(c-- h, d -  h) s(g, a - g - f  + b) 

w(p/q, d - h -  or)w(q'/p, t r -  f + b) w(p'/q', a -  g -  a) 
X ' 

w(p'/q, e -- c -- tr) [ ~ ( a  -- g -- tr)] -1 

• s(tr, a -  c - - f +  h)} (2.13) 

The parameters  p, p ' ,  q, q' are the so-called spectral parameters.  To  stress 
the dependence of W on these parameters ,  it would be more  correct to 
write 

W= W[p,p' ,  q, q'] 

Notice that  the spins are seen as elements of Z u. In the expressions 
(2.12) and (2.13) tr can be interpreted as a spin at the center of the cube. 
The elementary interactions are shown in Fig. 2. 

This means that in fact we are not considering a simple cubic lattice, 
but a body-centered cubic lattice. Bazhanov and Baxter noticed ~ that  the 
model  obtained in this way is an Ising-type model. Thus it turns out that  
(up to an overall normalizat ion factor, a site-type, edge-type, and face-type 
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Fig. 2. Interactions in the elementary cube. 

equivalence transformation) W satisfies the tetrahedron equation, t8'4'5) 
which guarantees that the model is integrable: 

E W(a4 [ c2, cl ,  c3 [ bl, b3, b2 [ d) W'(cl [ b2, a3, bl ] C4, d, C 6 [ b4) 
d 

x W"(bl I d, c4, c3 [ a2, b3, b4 ] c5) W"(d]  b2, b4, b3 I c5, c_,, c6 I a l )  

= Z W"(bl  I Cl, c4, c3 I a2, a4, a3 I d) W"(cl I bz, a3, a4 [ d, c2, C 6 I a l )  
d 

X W'(a4 I c2, d, c3 I a2, b3, al I c5) W(dl  al ,  a3, a2 [ c4, c5, c6 I b4) 

(2.14) 

In this equation W =  W(P), W ' =  W(P'), W " =  W(P"), and W " =  W(P"),  
where 

P = (xl ,  x2, x3, X4), p t  (X,l, x2 ,  x3 ,  x4)  
(2.15) 

. . . . . . . . . . . . . . . . . .  x~") P" = (x'(, x2, x3, x4 ), P = ( x l ,  X2 ~ X3 

with (xl ,  x2, x3, Xo)= (q, q' ,p ,p ' )  and the primes are added to the x's in 
correspondence with primes of the P's. Defining further 

x o. = x id (xJx i )  (2.16) 

we have that the tetrahedron equations (2.14) hold provided that the coor- 
dinates of the points P, P',  P", P "  satisfy the following constraints: 

/ l l i t  
X'~ X 2 XI2 XI2 X 3 X 2 

X! X I X I X I fOX 4 X 1 

m pt u 
X34 XI2 (.OI/2xI3X24 X 1 (DI/2xI2X34 X12 

t i t  ~ i t  ~ i t  
O) I/2x 4 X 1 XI4X32 X2 XI4X32 X2 
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. t r tt tt t . t tt tt 
X 14X32 X14X32 XI2X34  XI2X34 

i M j t  tt ~ p t t! i t  
XI3X24  3213X24 XI3X24  XI3X24  

tt ~ tit 
X 3  X 3  

. t t  . n t  

~ 4  ~ 4  

j t  . t i t  X t 4  tit . l i t  
X34 "Y34 XI3X24  

,v .t  ~ t 1/2 t .  m 
X 4 X 4 X 3 0.) X 14X32 

t tit tit 

X34 X12X34 
t j n  t i t  

X3 .Y,4X32 

1 / 2  t tt tit . t tt t i t  
O )  X 3 2 X 4 X 2 4 X  2 X I 3 X I X I 4 X l  

! t! tit t it . it! 
X3 X24X2 X24 Xl  X I 4 X I  -'(' 14 

- 1  

i . m 1/2 t . .tn 
X l 4 X 4 X , 4 X  4 0.) X I 3 X 3 X I 3 X  2 

1, = 1 (2.17) 
I tl Ill ! ~ t! lit 

X 4 X I 4 X 4  X24 X 3 X I 3 X  1 X32 

At this point it is useful to consider also the Boltzmann weight S 
of a parallelepiped ~' formed by a whole line of n cubes in front-to-back 
direction with periodic boundary conditions. Let 

~ = ( ~ ,  ..... ~,,), 

y = ( y ,  ..... ~,,,), 6 = ( 6 1  ..... 6,,) 
(2.18) 

denote the spins on the edges o f ~  (Fig. 3). 
Then 

s ( ~ , / L ~ , 6 ) =  I1 w(6,1o~,,~,,,6,+, I~,,+,,~,+,,~,1~,+,) (2.19) 
i E Z n  

Notice that S depends only on the pairwise differences of adjacent spins. 
This means that it is consistent to assume the following equivalence 
relation between the spins: 

~ [ 3 < ~ i - u , + , = t ~ i - - ~ i + l  V i = l  ..... n (2.20) 

OL 1 

O~O~n 3 ~ 

"~rl 

"-_ 73 

Fig. 3. Parallelepiped :~. 
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Further, following Baxter and Bazhanov, let us introduce also a 
slightly modified model. Let us substitute the variable a with the difference 
of two new spins in front-to-back direction, 

a = ~ - ~u' (2.21 ) 

This means that considering a row of n cubes in front-to-back direction, the 
following constraint is imposed on the variable a: 

a~=0  (mod N) (2.22) 
ie Zn 

The model obtained with this change of boundary conditions is called by 
Baxter and Bazhanov the "modified model." The Boltzmann weight of the 
parallelepiped ~ formed by a line of cubes in front-to-back direction is 
denoted So: 

N - - I  

So(~ [~,7, ~ ) =  I-] Z v/,,-/,i+l(~i] o~i, yi, ~i+l [ 7i+l,o~i+l, f l i]  [~i+l ) 
iEZn l l i=O 

(2.23) 

with 

w(p ' /p ,  u , -  u,+ , - ~, + tffi+ l) 
: S ( ~ i +  1 - -  /~i+ l ,  / ~ , - -  ]~,+1 ) 

w(p ' / p ,  3 i -  6i+ l - ~i + ~i+ ,) 

x s(~i+ 1, ~ -  6i+ l - ~'i + ~'~+ 1) 

f w (p /q ,  ~ i -  [3i+, - Iti + l i t+,  ) w(q ' /p ,  # ~ -  I1~+ 1 - Y~ + ~+1  ) • 
l w ( p / q ,  ~ -  ~ + 1 - P, + I~+ 1 )[r  6,+ 1 -/z~ +/~,+ ~)] - 

i 

X W  , 6i--6i+l--]Ji '~] . l i+l  

X S ( ~  i - - / t / i +  | ,  O i -  O~i+ ! -- ~)i "JF fli+ 1) t (2.24) 

The key idea of ref. 1 is to describe the Baxter-Bazhanov model as an 
integrable generalized chiral Potts model (~~ in the IRF presentation by 
the prescription in Fig. 4. For this aim, one starts from an edge of the two- 
dimensional lattice on which the chiral Potts model is defined. This edge is 
extended in a third additional dimension perpendicular to the plane of the 
two-dimensional lattice to form a rectangle consisting of n squares. The 
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aa ~ 

[ 
or = (O~1, . .  . ,O t r l )  /~ = ( / ~ l , - ' ' , ~ n )  

Fig. 4. Reduction procedure. 

two spins ct = (cq ..... e , )  and f l=  (ill ..... ft,) located at the vertices of the 
two-dimensional lattice are placed on the edges of the rectangle, as shown 
in Fig. 4. Cyclic boundary conditions are assumed in the new dimension, 
considering the spins el ,  fll as next to a,,, fl,,, respectively. Doing this con- 
struction for all edges of the two-dimensional lattice, we see that it becomes 
the three-dimensional cubic lattice ~ with N-valued spins at each site. 

Baxter and Bazhanov proved that the weight function Wpq(e, fl) of the 
chiral Ports model associated with an edge can be written in the form 

Wpq(O~, ~) 
w,,,,(O, O) i=1  

Notice that the rapidity variables in (2.25) form an n-vector 

(2.25) 

P = ( P l  ..... P,), q =  (ql ..... q,,) 

exactly as the spins do. In the three-dimensional interpretation the weight 
W?,~ is associated to the whole rectangle constructed in Fig. 4. This three- 
dimensional reinterpretation of the two-dimensional statistical model is 
allowed by the factorization property (2.25) of the Boltzmann weight: the 
ith term in the product depends only on the four spins cq, /~i, ~ +  1, /~;+1 
lcated at the vertices of the ith elementary square in the rectangle. Notice 
that not all two-dimensional integrable models have this factorization 
property. 
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Let us now consider the star of Fig. 5. Corresponding to this con- 
figuration we define the star-Boltzmann weight w (1) of the IRF  chiral ' ' s t a r  

Potts mode] 

(1) , q ,  W,tar(P, P , q, I c~, ~, T, O) 

- v  w.,.(c,, #) w.~(/~, ~) wr 7) w.,q.(,~, ~) 
w.,.(~, r) w<q(a, #) 

(2.26) 

whose W o. ( i , j = p , p ' , q , q ' )  are the edge-Boltzmann weights defined in 
(2.25). It turns out that W r satisfies the Yang-Baxter  equation t ' '12) 

- s t a r  

(1) , G) (1) ' r '  Wstar(P, p ,  q, q' [ Ct, fl, 7, W s t a r ( p c p  , r, [ a, 7, fi, e) 
t r  

W (I) ' r '  X startq, q', r, I a, a, s, x) 

(1) r t = Wstar( q, q', r, [ fl, 7, fi, a) 
t7 

(1) ' r' q '  X W s t a r ( p , p , r ,  ]Ct, fl, a ,X )  (t) , Wstar (P  , p ,  q, [ x, a, 5, 8)(2.27) 

The connection between the chiral Potts model and the Baxter-  
Bazhanov model arises because it turns out that the Boltzmann weight of 
the row of cubes in front-to-back direction ~ in the modified model exactly 
coincides with W (~1 

s t a r ,  

So(cq fl, 7, 6 )=  WCs~.r(a, fl, 7, 6) (2.28) 

Then in order to construct (cyclic) representations of the braid group, 
the usual procedure ~ 1.15)is to map by a Wu-Kadanoff-Wegener-like trans- 
formation the IRF  R-matrix defined by W(1) to a vertex-type one, and 

' ' s t a r  

hence to show that it is an intertwiner of the (cyclic) representations of the 
quantum group Uq(~l,,). The main result of this paper is to show in the 
next sections that by choosing some suitable limits of the spectral 

p/"'p, B 

Fig. 5. Elementary star. 
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parameters  characterizing the I R F  R-matr ix  (2.26) of the three-dimensional 
Baxte r -Bazhanov  model, one may obtain directly cyclic representations of 
the braid group, similarly to the two-dimensional  c a s e .  113'141 

3. THE CYCLOTOMIC INVARIANTS 

In order to construct cyclic representations of the braid group and the 
related cyclotomic invariants, the starting point  is the construction of a 
C*-algebra .~(c)  and of a functor .~  from the category of the uniform 
oriented tangles ~--~ to ~r following Date  et al. (~sl Notice, however, 
that they suppose N odd, whereas we consider also the case N even, when 
this is possible. Let us introduce some notat ions first. 

Let L be a free Z N module of rank n - 1 and suppose it is given by the 
exact sequence 

0 ~  Ker  re= ZN(1 ..... 1) ~ Z,~,~ L ~ 0 

This means that it is possible to write the elements of  L as 

ct= (ct~, ..., ct,,) 

with the equivalence relation (2.20), which implements the Z~v- t symmetry  
of the Baxte r -Bazhanov  model. 

Next let us introduce the nonsingular  bilinear form B on L, 

B(c~, f l )=  - ~ ~ i ( ~ i - ~ i + l )  (3.1) 
i E Zn 

which corresponds to the n • n matrix 

- 1  if i = j  

Bo.= 1 if i = j -  1 (mod n) (3.2) 

0 otherwise 

Let A(~, fl) be twice the skew-symmetric  part  of B(ct, fl), 

A(ot, fl) = B(a, fl) -- B(fl, ct) (3.3) 

These definitions are consistent, since B respects the equivalence relation 
(2.20). Notice that the form /3 considered in w of ref. 15 is twice the form B 
introduced here. The following Zu-l inear  isomorphisms v and ^ of L can 
be constructed: 

B(~,/~) = -B( /~ ,  ~) 
(3.4) 

B(~, f l )= --B(fl, o~) 

Clearly ^ is the inverse of " 
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Next we consider the category of the uniform oriented tangles ~--M. 
Recall that  this category is defined as follows. "9"2~ The objects of ~ M  ' ~  M are 
given by configurations c of M strings. By a configuration we mean a 
map  c: { 1 ..... M} ~ { ___ 1 } that  we write c = (c(1) ..... c(M)). We say that c 
is of type ( M + ,  M _ ) ,  if M §  = n u m b e r  of k for which c ( k ) =  1, M = 
number  of k for which c(k)= - 1 .  Obviously  M =  M +  + M _ .  Graphical ly 
a configuration c is a set of M strings such that  the k th  string, counted from 
left to right, is downward  or upward according as c(k)= 1 or c(k)= -1 ,  
respectively. There is an action of the symmetric  group SM on the set of 
configurations of M strings, and it is defined by 

s(c)=cos -l ,  with s c c S  M 

Notice that  s(c) = c' if and only if c and c' are of the same type. 
An (M,M)- t ang le  t is a smooth  one-dimensional  compact  sub- 

manifold of R 2 x [0, 1 ] such that 

3 t = t n ( R 2 x  { 0 , 1 } ) =  {(i, 0 ,0 )  l i = l  ..... M } w { ( j ,  0 , 1 ) l j = l  ..... M} 

and such that  every boundary  point is or thogonal  to the planes R x 0 and 
R • 1. A tangle is said to be oriented if the manifold is oriented. Two 
configurations c and c' are associated to each tangle in such a way that 
c ( k ) = _ + l  if the unit tangent vector to t in (k, 0 ,1 )  is (___1,0,0) and 
c'(k) = +__ 1 if the unit tangent vector in (k, 0, 0) is ( ___ 1, 0, 0), respectively. 
Two tangles are isotopic if there exists an isotopy of the strip R -~ x [0, 1] 
to itself, which is the identity on the boundary  and which carries one tangle 
into the other. An (M, M)-tangle is said to be uniform if it intersects 
each horizontal  line between the top edge and the bo t tom edge at exactly 
M, M -  1, or M -  2 points. In the case c and c' are of the same type, the 
morphisms hom(c,  c ')  of the category of the uniform oriented tangles f ~  
are given by the set of the isotopy classes of tangles with c on the top and 
c' on the bot tom,  otherwise horn(c, c ')  = ~ .  

Now, let us introduce the algebra M(c). It is a C-algebra with a unit 1. 
If M = 0  or M =  1, d ( c )  is simply C. If M>~2, d ( c )  is the algebra with 
generators " -  ~ x k - x k ( c  ) where l~<k~<M 1 and ~ L .  We impose the 
relations 

x ~  l 

x~t~=~omP'~lnx~+~ if ( c ( k ) , c ( k+ l ) )=( l , l )  k ~ k  

=~om='~)nx~ § if ( c ( k ) , c ( k + l ) ) = ( - 1 , - 1 )  

= x ~  +~ if c ( k ) # c ( k + l )  
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# ,,,at#.~),.# ,., if c(k + I) = - I X k X k +  1 ~ ~ k + l ~ k  

=ogat"a)x~+,x  k'~ if c ( k + l ) = l  

~ ~ ~ if [ k - k ' [ > / 2  X k X  k, ~ X k , X  k (3.5) 

On the algebra ~ ' ( c )  there is a linear involution, which is defined by its 
action on the generators 

(x~)* -- x k-" (3.6) 

After introducing the algebras d ( c ) ,  Date  et al. showed that  two 
algebras d ( c )  and ~r relative to configurations c and c' of the same 
type are canonically isomorphic  if N is an odd number:  

iF,: d ( c )  --* d ( c ' )  (3.7) 

To  see this, let us consider the case that c ' =  Sk(C) with Sk the permuta t ion  
(k, k +  1). If c ( k ) =  c(k  + 1), then c = c' and i F, = ida(c). Otherwise, in the 
case that c ( k ) =  - 1 ,  c ( k +  1 ) =  1, i F, is defined as follows: 

�9 c ~t ct p i t c,(Xk,(C)) = Xk(C ) if Ik - k ] ~.- 2 

i : , ( x~+t (c )  ) - _ --Xk+_,(C')X~'+~V2(C') (3.8) 

i : , ( x ~ ( c ) ) = x [ ~ ' ( c  ') 

while in the case that c(k)  = 1, c (k  + 1) = - 1, 

i~ , ( x~ , ( c ) )=x~(c ' )  if I k - k ' l  >12 

i:,(x~+_. , (c))  -- "" - x k +_ , ( c ' )  x ~  ~ + ~)/2(c')  (3.9) 

i:,(X~k(C)) = X[~(C ') 

In terms of the operators  x~, it is possible to define the operators  
describing the images of the functor ~- of the elementary tangles as 

Tk(c)=~D ,~,~ o~-B'"')/2x;(c) 
1 

a, fl e L 

1 

if c ( k ) = c ( k + l )  

if c(k)  v~ c(k  + I), N odd 

if c ( k ) r  1), N odd 

(3.10) 
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c(k) c(k+1) c(k) c(k+1) c(k) c(k+1) c(k) c(k+l) 

c(k) c(k+l)c(k) 
o + o; 

Fig. 6. Elementary tangles. 

where D = N " - I .  Notice that if N is even, we consider only the case 
c(k)= 1 Vk or c ( k ) = - 1  Vk, in which the tangles reduce to ordinary 
braids. In that case the division by 2 in the exponent is not interpreted as 
an operation in Z N, but as taking a square root of co. The value of the 
cyclotomic knot invariant introduced in (3.21) is independent of the choice 
of the root. Notice also that E~ is defined only when c(k)  ~ c(k  + 1 ), N odd, 
and that whenever this element will be considered these conditions are 
implied. Recall that the functor ~- from the category 9--~ of the uniform 
oriented tangles is constructed as follows, c~5) First, the morphisms of ~--~ 
are generated by the elementary tangles shown in Fig. 6. 

Let us suppose N odd. As a consequence of the defining relations 
(3.10) of the morphisms Tk, Ek and using the commutation relations (3.5) 
of the x~., Date et al. ~51 verified that the elements (3.10) satisfy the 
following relations, in which the strings should be oriented in all possible 
ways: 

T*  = T k 

Tk Tk,= Tk, Tk if 

T,T,+,T,= T,+~T, Tk+I 

E* = E k 

Ek Tk, = Tk, Ek if 

Ek Ek. = Ek, Ek if 

+ 1  T ~- Ek -- Ek 

Ek Ek • l E ,  = Ek 

E k E k + _ t T ~ l = E  T ~-j k k + l  

Ig-k'l >t2 

Ik-k'l ~2 

Ik-k ' l~2 

(3.11) 

Notice that the first relation means that Tk is unitary, while the second and 
the third are the braid group relations. As an example, let us show the third 
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relation, if c(k)= 1 Vk. The left-hand side of the equation may be written 
a s  

Tk Tk + l Tk ~, CO - l /2[B(r ' t ' :x j+ g f l l ' B j +  B(7'TDv'~t  "r -y 
" k " k +  I X k  

= ~ O)-- I /2[B(~t ' z t )+B(f l ' "q)+B(Y' ) ' )+A(cc 'Y)+2B(y ' f i ) ] ' (  zr 
" k ~ k + l  

~t, fl, y 

= ~ CO-I /2[B(6, ' ,SI+B(B,  f l )+2B( ' I , '~ ' ) -2Bf? ,6)+2B( ' ; , f l ) ]~  6 ",eft 
~ k ~ k  + 1 

IL y.6 

By the same arguments the right-hand side may be written as 

Tk+, Tk Tk+ ) = ~ W-I/2tn(~"')+B(a's)+n(r'r))X~+ ,XkXk+ 1 
:L, (5 , y 

= ~ (1) - I / 2 [B(d ' (~ I+B(B ' f l )+2B(y ' ' ) ' )+2B( I j ' ; ' I -2BI f l ' ' I ) ] ' ' ' ~ r f l  
~ k ~ ' k  + 1 

,& "~,, 6 

Making the change of  variables y ~ i, we obtain exactly the same expres- 
sion, which gives the left-hand side. 

The relations (3.11) are the defining relations of the class of the 
morphisms hom(c,c)  in the category Y-~.  This means that the functor o ~ 
mapping ~ to d ( C )  defined by M 

~(c) =.~'(r 

~ ( ~  ) = , ~ / r  +-'), ~ ( 0 ~  ) = ~.r +- l) 
(3.12) 

is well defined. Here ~t / (a)eEnd(d(c) )  denotes the left multiplication by 
a e d .  

Notice that if c(k) = 1 Vk or c(k)= - 1 Vk, then the tangles Tk give a 
representation of the ordinary braid group. In that case it is possible to 
generalize the construction to N even, and it is immediate to see that the 
first, second, and third of relations (3.11) remain valid. 

Moreover,  in the case that c(k) = 1 Vk or c(k) = - 1 Vk, we can con- 
sider also the right multiplication by elements of sO(c) and we obtain a 
right-regular representation of  the braid group, not only a left-regular one. 
Further, if n = 2 and c(k) = 1 u or  c(k) = - 1 Vk, the operators Tk satisfy 
the "generalized skein relations" 

/ - I  

T~= ~. AiTi~ (3.13) 
i = 0  
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with the order l of the skein relation given by 

~(N + 2)/2 if Neven (3.14) 
l = [ ( N + l ) / 2  if N o d d  

Formula (3.14) can be valid only when the equation 

x 2 = 1 (mod N) (3.15) 

admits no other solutions apart from the two values x =  1 (rood N) and 
x =  N - 1  (mod N). In particular, it is valid for the prime numbers. It 
shows that for n = 2 and N =  2, 3 the algebra defined by the operators Tk 
can be expressed in terms of the Hecke algebra. 1~3'~4' More generally, 
operators satisfying generalized skein relations like (3.13) can be obtained 
with a "cabling procedure" starting from the generators of the Hecke 
algebra. In Eq. (3.13) the coefficients Ai are the solutions of the linear 
system 

1 /--1 
E I~ (l)B(~t(i+l)'~176 

O//2 ~{2),...,~(/)EL i= 1 

I--1 Ar r--I 
= ~ ( l k ( O . o ' A o  "b E Dr~2 E l--I ~  (3.16) 

r = l  ~t(2),...,=|r)EL i=1 

Moreover, let Tr denote the usual matrix trace on End(~'(c))  normalized 
as Tr(1 ) = 1. 

With all these preliminaries an invariant of oriented links can be con- 
structed as follows. Let i denote the link obtained by closing the tangle t, 
and let v be the number of its crossings. Further, let (k, i), 1 ~<i<~mk, 
denote the ith crossing, counted from top to bottom, between the strings 
k, k + 1. The sign of such a crossing is denoted e(k, i), and we say that 
(k,  i )  < (k ' ,  i ' )  if the crossing (k, i) is above (k', i ')  in the diagram. Then 

~ = ~'(T~,(~ ~'lJ "''~k,.W~(k"'"'k'l~' , (3.17) 

and the expression 

z ( i )  = D I M  ' ~ / 2 T r ( . J # ( T ~  ~'l~ " �9 " --k,,r~k"''k'l~' , ,  for t ~ h o m ( c , c )  (3.18) 

gives an invariant of oriented links. Further, the Tr can be defined by its 
action on the generators 

{~ if cq . . . .  ~ , ,=0 (3.19) 
Tr(x2' ' "" x2") = otherwise 
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The quanti ty (3.18) is invariant  under the Markov  moves 

A A 

r ( t t ' ) = z ( t ' t )  t ~ hom(c,  c'), t ' e hom(c ' ,  c) 
A 

~( tO+)=T( i )  t e hom(c,  c) 
A 

r ( t a h ) = z ( i )  t ~ hom(c,  c) 

(3.20) 

where c, c' are configurations of M strings, and c ( M +  1 ) =  c(M). Because 
of (3.20), the expression (3.18) gives a cyclotomic invariant of the tangle. 
Here by cyclotomic invariant we mean a link invariant  defined through a 
cyclic representation of the braid group. In the case that  the tangles are 
associated to braids, the invariant is well defined also for even values of N. 
Moreover ,  Date  et al. have shown that  if/~ is a closure of a braid b s BM 
with v crossings, then (3.18) becomes 

"C(/~) = N ( " -  l ) ( M -  ~ -  1)/2 ~ o9 Q(~<'~')/: , 

~ ~ Z~v-M+ ~ | Z~, -~ 
with bE B M (3.21) 

Here Q(ct, ~) is the bilinear form determined by the matrix 

Q = S | 1 7 4  'T (3.22) 

where S is a ( v - M + l ) x ( v - M + l )  Seifert matrix for /;; B' is the 
n - l x n - 1  matrix given by B~ .=I  if i<~j, B ~ = 0  otherwise; and T 
denotes the transposit ion of a matrix. The matrix B' is associated with the 
same quadrat ic  form given by B, because it is the obtained by making the 
change of the basis cq. ~ cq - cq+ ~ for i = 1 ..... n - 1 in the module L. Notice 
that  it is not necessary to consider a , , - a ~ ,  because the rank of L is only 
n -  1 by (2.20). 

To obtain (3.21), observe that  by using the definition of the operators  
Tk in (3.10), the commuta t ion  relations (3.5), and the expression (3.19) for 
the trace, we obtain 

"r(i) = D M-  v-  1 ~ {(ore Zk.J [-(~.(k.il+ ~(k.i+ l l)B(~(k.i).,(k.i))2 

u( 1, i ) , . , . ,~(v,  mt, -- 1 ) r L 

X (.D 1/2 Zk ,  i [ ( I  + e ( k . i +  l ) ) B ( ~ ( k , i ) , ~ { k , i +  1 ) ) +  ( c ( k . i +  1 ) - -  l ) B ( u ( k , i +  l ) , u ( k , i ) ) ]  

x co zk.' EB~(k.i),~(k + Li*)-- B(~[k,i-- ~),~(k + L~*))2 } (3.23) 

Here i* signifies the largest j such that  ( k + l , j ) < ( k , i ) .  Date et al. (15) 
have shown that it is possible to construct  a Seifert surface for i by means 
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of the Seifert algorithm, so that the corresponding Seifert form ~b is given 
by 

~b(7(k, i), 7(k, i)) 

= - (e (k ,  i )+e(k ,  i+ 1))/2 

~b(r(k, i), 7(k, i +  1)) 

= (1 +e(k, i+  1))/2 

~(7(k, i +  1 ), 7(k, i)) 
(3.24) 

= ( - 1  +~(k,  i +  1))/2 

r i), 7(k+ 1,j)) 

=1 if ( k + l , j ) < ( k , i ) < ( k + l , j + l ) < ( k , i + l )  

q~(y(k, i), y (k+ 1,j)) 

- - 1  if ( k , i ) < ( k + l , j ) < ( k , i + l ) < ( k + l , i + l )  

In this equation 7(k, i) is the cycle passing counterclockwise through the 
crossings (k, i) and (k, i + 1 ). Using this Seifert form, it is immediate to see 
that (3.23) coincides with the expression (3.21). 

Now (3.22) has a topological meaning, since Q is a presentation 
matrix for the ZN module Hi(M,,, ZN). Here M,, is the nth cyclic covering 
of S 3 branched along the link b. This means that for N an odd prime 
number the module of z(/~) can be written as 

Iz([~)l = N p'/2 (3.25) 

where fl,, is the first Betti number of M,, relative to the homology group 
H~(M,,, ZN). Hence, if the quadratic from B' is nonsingular, z can be 
expressed as a function of products of classical Alexander polynomials 
associated to the link/~. 

4. THE S P E C T R A L  L IMITS OF THE IRF 2D R E D U C E D  
B A X T E R - B A Z H A N O V  M O D E L  R - M A T R I X  A N D  
THE T A N G L E  I N V A R I A N T S  

In this section we shall show that it is possible to obtain directly the 
cyclotomic invariants from the Boltzmann weights S of the 3D Baxter- 
Bazhanov model (see Section 2), after taking some suitable limits of the 
spectral parameters (p,p',  q, q'). Furthermore, we shall show that taking 
other limits of the spectral parameters, it is possible to obtain general- 
izations of the cyclotomic invariants from the Boltzmann weights So of the 

822/78/3-4-28 
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modified Baxter-Bazhanov model. The first step is to define the Yang- 
Baxter operators 

.7,' ] ) ~ t ' ( l )  - ,  �9 ~ t ' { M  - I )  
(Yko(P,P' ,  q, ~ , ,~ l )  . . . .  ~M-I) 

(4.1) 
t t i t  ~ )  or'( 1 ) .  �9  ct'�91 M - -  1} ( Yk(P, P ,  q, u ~,~(1) . . . .  tM- t) 

'( ) = - -  I-I 6~,~l)~,'lo S ( o t ( k -  1), ~(k), ~ (k+  1), a' (k) )  
O iv~k 

These operators act on a subspace (~#/ -10) ) |174  where 
-l/r= (CN)| " and ~r is the subspace generated by the elements of'/r 

~ , = ~ . ~ , , + k |  "'" | (4.2) 
k 

where e; is the canonical base of C N and a ~ L. The subspace ,~q/-r has 
dimension D = N" - J ,  while r162 has dimension N". But this restriction is 
necessary in order to implement the 7 " - t  symmetry of the Baxter- ~ N  

Bazhanov model and hence the equivalence relation (2.20). 
Then Yang-Baxter operators depend on the spectral parameters 

(p ,p ' ,  q, q'). In analogy with the standard procedure established by, e.g., 
Akatsu, Deguchi, and Wadati, ~3' 14) the operators Yk and Yko give a matrix 
representation of the braid group BM if some spectral limits on (p, p' ,  q, q') 
are taken. It turns out that in these limits Yk goes either to the left- 
regular or to the right-regular representation of the operators Tk(c)• with 
c ( k ) = l  V k = l  ..... M or c ( k ) = - I  V k = l  ..... M. To find braid group 
representations the first thing is to look for the values of the spectral 
parameters where the model is critical. This means that we must consider 
the trigonometric limit in which all the elementary cubes in the parallel- 
epiped ~ considered in Section 2 have the same spectral parameters. This 
assumption guarantees that the model is homogeneous. Then we have 
found the following limits in which we obtain the left-regular representa- 
tion of the operators T~ J, k = 1 ..... M -  1: 

(Ia) P ~ q ~ P ' = q ' :  Y k ~ T k ( C ) ,  c ( k ) = l ,  V k = l  ..... M 

(Ib) q , ~ p , ~ p ' = q ' : Y k W - , T ~ . ~ ( C ) ,  c ( k ) = l ,  V k = l  ..... M 

(IIa) p ' , ~ q ' , ~ p = q : Y ~ . r - ~ T k ( c ) ,  c ( k ) = - l ,  V k = l  ..... M 

(IIb) q ' , ~ p ' , ~ p = q : Y k ~ - ~ T [ t ( e ) ,  c ( k ) = - l ,  V k = l , . . . , M  

(4.3) 
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To see this, let us choose the following base of the algebra d ( c ) ,  ~5) 

{y(c)=fA)(--l/2)~'~r x~  (1) "XCt(MMll)}ot{k)~L (4.4) 

where 

)'B(ct,/~) if c = 1 
BC(ct, /3) (4.5) " x  

[ B ( 3 , ~ )  if c = - I  

The map 

p: A(c)  ~ (~(o~) |  u - ,  (4.6) 

defined by 

p(y(c) )  = ~( ,  ) |  . . .  | ~,IM- 1 ) (4.7) 

is an isomorphism of C*-algebras. Let us prove that (Ia) is right. The 
matrix elements of the operators pTkp  -1 in the case c ( k ) =  1 Vk, omitting 
p, can be written as 

' T '  " ~ ( ' ( 1 )  . - .  ~ ( ' ( M  - -  1 ) 
aklct( l ) . . .~(M--  1) 

,/5 
X (j)[l/2(B(~tk) - e ' ( k ) , ~ ( k  + 1 ) )  - B(~(k - -  1 ) , e l k )  - ~ ' ( k l )  - B(~(kl, e(k)) - B(~'tk),~'(k)l)] 

(4.8) 

where ~ means the isomorphism given by conjugation with p. The 
Yang-Baxter  operator  Yk in the limit (Ia) gives the same matrix operators, 
provided a similarity transformation is made. To obtain this result, let us 
calculate the limits of the function w defined in (2.8). We find 

w(x , / )  = { !  ( l ) - I  if x ~  

w(x, 0) /o if x ~  1 
if x ~ 0  

(4.9) 

Using these limits, it is possible to show that 

'co BI . . . .  ~) if p/q ~ oo 

Wpq(O~, ~ )  (~t, fl if p/q--* 1 
Wpq(O, 0) {.o)sla.~_pl if p / q ~ O  

(4.10) 
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From (2.28) it follows immediately that in the limit (Ia)  

S(ct, fl, y, 6)=So(cqfl ,  y, 6)=co Bl~'#)-St~'~+Bl~'~-m (4.11) 

To  obtain (4.8) from (4.11), we multiply S by the factor 

x / ~  co tB~,,~I- B~/~,/~) + n~/~- ~.~ + B~=./7- ~]/2 (4.12) 

It is a site-type, edge-type, face-type equivalence t ransformat ion and does 
not change the factorization properties nor  the parti t ion function of the 
model. With the same tools it is possible to see that (Ib), (IIa),  ( I Ib)  hold, 
provided that  S is multiplied by the factor (4.12) in the case (Ib), and by 
the factor 

v / ~  co t z~/~,/~- n~,~) - ~/~ - ~.~ - n~,,/~ - ~)2/2 (4.13) 

in the cases (IIa)  and (lib).  Further,  by the same arguments,  ~t is possible 
to prove that there are other limits giving the T ~  1 in the right-regular 
representation, obtained from the left-regular one by transposing the 
matrices. These limits are given by 

( I I Ia)  p = q < p ' ~ q ' :  Ykw-~Tk(C), c ( k ) = l ,  V k = l  ..... M 

( l I Ib)  p = q ~ q ' ~ p ' :  YkF-~T[~(c), c ( k ) = l ,  V k = l  ..... M 

(IVa) P ' = q " ~ P ' ~ q :  Y k ~ T k ( c ) ,  c ( k ) = - l ,  V k = l  ..... M 

(IVb) p ' = q ' ~ q ~ p :  Ykv--~T~.t(c), c ( k ) = - l ,  V k = l  ..... M 

(4.14) 

At this point a question arises: it is possible to get other kinds of braid 
group representations and hence other link invariants starting from the 
Yang-Baxter  equation of the Baxte r -Bazhanov  model? For  N odd we 
fix the configuration of 2 M - 1  strings where c ( 2 k - 1 ) = -  1, c ( 2 k ) =  1, 
V k =  1 ..... M - 2 ,  c ( 2 M - 1 ) = - 1 .  We obtain the following picture for 
k = l  ..... M - 3 :  

(Va) p ' ~ q ' ~ p ~ q :  Yko~--~ 

T2k + l(S2k + l(C)) Tx(s~_k + t(C)) TX + z(Szk + t(C)) T2k+ l(c) -1 

(Vb) q " ~ p '  ~ q ~ p :  YI~o~--~ 

T2k+ l(S2k+ I(C)) T2k(S2k+ t(C)) -1 T2k+2(S2k + I(C)) -1 T2k + l(C) -1 

(Via) p ~ . q ~ p ' ~ q ' :  Yko~--~ 

T2k + l(S2k + j(C)) - l  Tzk(S2k + I(C) ) T2k + 2(S2k + ,(C)) T2k + ,(C) 

(VIb)  q ~ p ~ q ' ~ p ' :  Yko~--+ 

T2k+ t(Szk+ l(C)) -1 T2k(S2k+ l(C)) - l  T2k+2(Szk+ l(C)) -1 T2k+ l(C) 
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(VIIa) 

(VIIb) 

(VlIIa) 

(VIIIb) 

(IXa) 

(IXb) 

(Xa) 

(Xb) 

p ~ q ~ q ' ~ p ' :  Yko~---~ 

T2k + l(S2k + l(C)) - l  T2k(S2k + l(C)) T2k + z(S2k + l(C)) - l  T2k+,(C) 

q ~ p ~ p ' ~ q ' :  Yko~--~ 

T2k+ t(S2k+ l(c)) -1 T2k(S_,k + 1(C))-' T2k+2(S2k+ 1(C)) T2k+ I(C) 

q' <~ p' ~ p ~ q: Yko ~--~ 

T_,h+ l(Szk + l(c)) T2k(S2k + ,(C)) T2k + z(s2k + ,(C)) - l  T,h+ ,(C) -l  

p' ~q '  ~q .~  p: Yko~--~ 

T2k+ l(s-,k + 1(c)) T-,k(S2k+ l(C))-'  T-,k+-,(S2k+ i(C)) T,h+ l(C) -l  

p ~ p ' ~ q ~ q ' :  Yko~--~ 

T2k+ l(S2k+ l(C)) T2k(S2k+ l(C)) T-,k+2(S2k+ l(C)) T2k+ l(C) 

q ~ q ' ~ p ~ p ' :  Ykov--~ 
T-,h+ l(S2k+ I(C)) I T2k(S2k+ l(C)) - l  T-,k+2(Szk+ I(C)) -1  T2k+ l(C) - I  

p ' ~ p ~ q ' < q :  Ykov---~ 

T_,h+ l(S2k + i(c)) T,_k(S2k + 1(C)) Tzk + z(S2k + l(c)) T-,h+ t(C) 

q ' ~ q ~ p ' ~ p :  Y,o~--~ 

T-,h+ l(Szk+ l(C)) - l  T_,k(S2k+ t(C))-I Tzk +2(s2k+ I(C)) -I T-,h+ l(C) - I  

(4.15) 

Now we must explain the meaning of the products 

T+zk+ l(Szk + l(C)) T+2k(S2k + t(C)) T+zk+2(S2k+ 1(C)) T_+zk+ l(C) 

+ 1  where T + l k = T ~ . .  We construct a representation N of A(c) on 
(~#r~o))| for the configuration c ( 2 k -  1)= - I ,  c(2k)= 1 for 1 ~<k~< 
M - 2 ,  c ( 2 M - 1 ) =  --1 in the following way. Notice that adjacent strings 
have the opposite directions. Following ref. 15, we introduce the following 
operators acting on ~/F~~ 

Z i = l |  ..- | 1 7 4  ... |  (4.16) 

X i = I |  ... | 1 7 4  ... |  (4.17) 

where X and Z act on the ith factor C N in ~qFIo~ and are defined by 

Zkl = 6k.l+ 1 (4.18) 

.J(kl= O)k Ok,1 (4.19) 
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for k, l e Z N .  Moreover, using the operators (4.16) and (4.17), we define for 
e e L  

X ~ = X ~  ~. . .  X~." (4.20) 

Z ~ = Z~' . . .  Z~," (4.21) 

Then the representation ~ is given by 

~ ( x~k_ , )=  1 | ... | 1 7 4  ... |  

~(X~k )= 1 | "" | 174174  " .  | 1 

(4.22) 

(4.23) 

where the action of Z = in (4.22) is on the kth space, while the action of 
XB=| -B~ in (4.23) is on the kth and (k+  1)th spaces. Notice that it is 
possible to multiply the operators Tk+ ~(sk(c))Tk(c) relative to configura- 
tions which differ by a permutation, because the algebras d ( c )  arising from 
configurations of the same type are canonically isomorphic through (3.8) 
and (3.9). Thus, as a consequence, the matrix elements of the Yang-Baxter 
operators Yko in the limits (V)-(X) are exactly the matrix elements of the 
products 

T• l(S2k+ l(C)) T• + 1(C)) T• I(C)) T• l(C) 

in the representation ~ ,  where in (4.15) we have omitted to write the 
label N. 

Moreover, we have verified that the trace on the braid group represen- 
tation given by the operators Yko in the limits (V) and (VI) enjoys the 
Markov properties. This can be verified immediately by observing that in 
the representation ~ the trace has the properties (3.19). Let us show, e.g., 
the invariance under the Markov move 2 in the case (Va). We define 

~: B M _  2 --,  (~//'~~ M - I  

rc(bk) = Yko, k = 1 ..... M -  3 
(4.24) 

where the bk are the braid group generators satisfying the relations 

bkbk,=bk, bk for k , k ' = l  ..... M - 3 ,  Ik -k ' l>~2  

bkbk+lbk=bk+lbkb~+l for k = l  ..... M - 4  
(4.25) 

and 

z'(/~) = D M- 3 Tr(rc(b)) (4.26) 
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where the trace is normalized as T r ( 1 ) =  1. Indeed, omitt ing to write the 
configuration c on which the operators  act, by applying repeatedly first and 
second Markov  moves, as well as the braid group relations, we obtain 

m 

z ' ( g b M - 1 ) = D M - 2 T r ( r c ( g )  T 2 M - I T 2 M -  2 T2M T 2M-1 _ l) 

= D M- 2 Tr(T~-M 1 _ l n (g  ) T2M- 1 T2M- 2 T2M) 

= D M- 5/2 Tr( T~-M l _ I n(g)  T2M- l T2M- 2) 

= D M-  5/2 Tr(Tt(g) T2M _ 1 T2M- 2 T2M l - ,  ) 

= D M - 5/2 Tr (n (g)  T~M l _ ,_ T2M_ 1 T2M- 2) 

= D M - S / 2 T r ( T ~ M _ 2 n ( g )  - l  T 2 M _ 2 T 2 M - 1 )  

= D  M-3  T r ( T 2 M _ 2 n ( g )  T2M1_2) 

= z ' (~)  (4.27) 

where g e B M _ ~  and b M _ ~ e B M .  
If N is even, the operators  Yko are well defined and it is possible to 

construct the representat ion ~ of the braid group. In the case (V) and (VI) 
it is possible to verify that  the ordinary trace on the representat ion enjoys 
the Markov  properties and hence we obtain the same link invariants that  
we have when N is odd. These properties can be verified directly on the 
representation re. 

To  summarize,  we have shown that  the ordinary trace on the Yko is 
invariant under the Markov  moves I and 2, and hence provides tangle 
invariants (The tangles are in correspondence with the Yang-Baxter  
operators).  We collect the results of this section in Table I. 

5. G E N E R A L I Z A T I O N S  

In the previous section we showed that the 3D Baxte r -Bazhanov  
model can be related to the cyclotomic knot  invariants generated by the 
limits ( I ) - ( IV)  of the associated Yang-Baxter  operators  Yk" Under  the 
other limits (V)- (X)  one obtains products  like 

T+_2k+l(S2k+l(C)) T+_zk(S2k+l(C)) T• T+2k+l(C) (5.1) 

It is intriguing to. think that the products  (5.1) give a "cabling" representa- 
tion of the braid group, analogously to the procedure established by 
Akutsu, Wadati ,  and Deguchi t13'14~ to construct higher-dimensional braid 
group representations of the Hecke algebra of B M. However  some observa- 
tions are in order: 
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(i) The cabling here is perhaps related to higher-dimensional 
m 

representations of Uq(gl(n)) with qU= 1. 

(ii) Probably we must give up the orientation, and hence the 
invariants are of nonoriented type. 

(iii) The single Tk are related to a representation of the Temperley- 
Lieb algebra ~7"1s~ only for N =  2, 3 and n = 2. Therefore only in these cases 
one may think to generalize the construction implemented in refs. 13 
and 14. 

Work along this direction is in progress. 
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